miércoles, 6 de octubre de 2010

EFECTO FOTOELETRICO



El efecto fotoeléctrico fue descubierto y descrito por Heinrich Hertz en 1887, al observar que el arco que salta entre dos electrodos conectados a alta tensión alcanza distancias mayores cuando se ilumina con luz ultravioleta que cuando se deja en la oscuridad. La explicación teórica fue hecha por Albert Einstein, quien publicó en 1905 el revolucionario artículo “Heurística de la generación y conversión de la luz”, basando su formulación de la fotoelectricidad en una extensión del trabajo sobre los cuantos de Max Planck. Más tarde Robert Andrews Millikan pasó diez años experimentando para demostrar que la teoría de Einstein no era correcta, para finalmente concluir que sí lo era. Eso permitió que Einstein y Millikan fueran agraciados con sendos premios Nobel en 1921 y 1923, respectivamente.

Los fotones del rayo de luz tienen una energía característica determinada por la frecuencia de la luz. En el proceso de fotoemisión, si un electrón absorbe la energía de un fotón y éste último tiene más energía que la función trabajo, el electrón es arrancado del material. Si la energía del fotón es demasiado baja, el electrón no puede escapar de la superficie del material. Aumentar la intensidad del haz no cambia la energía de los fotones constituyentes, solo cambia el número de fotones. En consecuencia, la energía de los electrones emitidos no depende de la intensidad de la luz, sino de la energía de los fotones individuales.

Tomado de: http://www.ua.es/cuantica/docencia/qf_II/Tema_1/node6.html

FORMULACION MATEMATICA

Para analizar el efecto fotoeléctrico cuantitativamente utilizando el método derivado por Einstein es necesario plantear las siguientes ecuaciones:
Energía de un fotón absorbido = Energía necesaria para liberar 1 electron + energia cinetica del electron emitido
Algebraicamente:

hf = \phi + E_k\,

Donde h es la constante de Planck, f0 es la frecuencia de corte o frecuencia mínima de los fotones para que tenga lugar el efecto fotoeléctrico, Φ es la función trabajo, o mínima energía necesaria para llevar un electrón  a camiar de nivel  y Ek es la máxima energía cinética de los electrones.
Nota: Si la energía del fotón (hf) no es mayor que la función de trabajo (Φ), ningún electrón será emitido.


Tomado de: http://es.wikipedia.org/wiki/Efecto_fotoel%C3%A9ctrico

APLICACIONES DEL EFECTO FOTOELECTRICO


El  Efecto Fotoeléctrico tiene importantes  aplicacione ya que  Es la base de la producción de energía eléctrica por radiación solar y del aprovechamiento energético de la energía solar. Para la fabricación de células utilizadas en los detectores de llama de las calderas de las grandes usinas termoeléctricas. Las células fotoeléctricas: Usadas para la detección de presencia y los equipos fotovoltaicos de los paneles de energía solar . El efecto fotoeléctrico se aprovecha en numerosos campos de la ciencia y la técnica tales como:
  • Las células fotoeléctricas que se utilizan como interruptores se construyen bas á ndose en el efecto fotoel é ctrico. Colocadas en un circuito controlan el paso de la corriente: conducen cuando se iluminan y bloquean el paso de corriente cuando no incide la luz en ellas .
  • Los dispositivos llamados fotodiodos y foto multiplicadores que se basan en este principio, intervienen en procesos como:El control de productos industriales, Las transmisiones por fax, Los tubos de televisión o los amplificadores de imágenes.

FOTODIODOS

El fotodiodo es un diodo semiconductor, construido con una unión PN, como muchos otros diodos que se utilizan en diversas aplicaciones, pero en este caso el semiconductor está expuesto a la luz a través de una cobertura cristalina y a veces en forma de lente, y por su diseño y construcción será especialmente sensible a la incidencia de la luz visible o infrarroja. Todos los semiconductores tienen esta sensibilidad a la luz, aunque en el caso de los fotodiodos, diseñados específicamente para esto, la construcción está orientada a lograr que esta sensibilidad sea máxima.

Los diodos tienen un sentido normal de circulación de corriente, que se llama polarización directa. En ese sentido el diodo deja pasar la corriente eléctrica y prácticamente no lo permite en el inverso: es la base del funcionamiento de un diodo. Pero en el fotodiodo la corriente que está en juego (y que varía con los cambios de la luz) es la que circula en sentido inverso al permitido por la juntura del diodo. Es decir, para su funcionamiento el fotodiodo es polarizado de manera inversa. Se producirá un aumento de la circulación de corriente cuando el diodo es excitado por la luz.
Lo que define las propiedades de sensibilidad al espectro de un fotodiodo es el material semiconductor que se emplea en la construcción. Los fotodiodos están construidos de silicio, sensible a la luz visible (longitud de onda de hasta 1,1 µm), de germanio para luz infrarroja (longitud de onda hasta aproximadamente 1,8 µm), y los hay de otros materiales semiconductores. El rango de espectro es:

Silicio:    190–1100 nm
Germanio:    800–1700 nm
Indio galio arsénico (InGaAs):    800–2600 nm
Sulfuro de plomo:    1000-3500 nm

QUE ES EL INFRAROJO

Nuestros ojos son detectores que han ido evolucionando para detectar ondas de luz visible. La luz visible es uno de los pocos tipos de radiación que puede penetrar nuestra atmósfera y que es posible detectar desde la superficie de la Tierra. Como hemos visto en la página Descubrimiento de los rayos infrarrojos, también existen otros tipos de luz (o radiación) que no podemos ver. De hecho, solamente podemos ver una parte muy pequeña de toda la gama de radiación llamada espectro electromagnético. El espectro electromagnético incluye los rayos gamma, los rayos X, los rayos ultravioletas, la luz visible, los rayos infrarrojos, las microondas y las ondas de radio. La única diferencia entre estos distintos tipos de radiación es su longitud de onda y su frecuencia. A medida que pasamos de los rayos gamma a las ondas de radio, la longitud de onda aumenta y la frecuencia disminuye (también disminuyen la energía y la temperatura). Todos estos tipos de radiación viajan a la velocidad de la luz (300.000 km/s en el espacio vacío). Además de la luz visible, también llegan a la superficie de la tierra desde el espacio ondas radio, una parte del espectro infrarrojo y una parte muy pequeña de radiación ultravioleta. Afortunadamente, nuestra atmósfera bloquea el resto de la radiación, la cual es muy peligrosa y hasta mortal para las formas de vida en la Tierra.



Dentro del espectro electromagnético, la radiación infrarroja se encuentra comprendida entre el espectro visible y las microondas. Las ondas infrarrojas tienen longitudes de onda más largas que la luz visible, pero más cortas que las microondas; sus frecuencias son menores que las frecuencias de la luz visible y mayores que las frecuencias de las microondas. El término infrarrojo cercano se refiere a la parte del espectro infrarrojo que se encuentra más próxima a la luz visible; el término infrarrojo lejano denomina la sección más cercana a la región de las microondas.


La fuente primaria de la radiación infrarroja es el calor o radiación térmica. Cualquier objeto que tenga una temperatura superior al cero absoluto (-273,15 °C, o 0 grados Kelvin), irradia ondas en la banda infrarroja. Incluso los objetos que consideramos muy fríos —por ejemplo, un trozo de hielo—, emiten en el infrarrojo. Cuando un objeto no es suficientemente caliente para irradiar ondas en el espectro visible, emite la mayoría de su energía como ondas infrarrojas. Por ejemplo, es posible que un trozo de carbón encendido no emita luz visible, pero que sí emita la radiación infrarroja que sentimos como calor. Mientras más caliente se encuentre un objeto, tanta más radiación infrarroja emitirá. A la temperatura normal del cuerpo, la mayoría de las personas irradian más intensamente en el infrarrojo, con una longitud de onda de 10 micrones (el micrón o micrómetro es una unidad comúnmente utilizada en astronomía y equivale a una millonésima de metro). La imagen en la izquierda (cortesía de SE-IR Corporation) muestra la fotografía de un gato tomada en la banda infrarroja. Las áreas de colores naranja y blanco son las zonas más calientes, en tanto que las áreas azules son las más frías. Esta imagen nos da una idea diferente de un animal que nos resulta familiar, y brinda información que no podríamos obtener a través de una imagen de luz visible.

En la oscuridad, los detectores infrarrojos pueden ver objetos que no es posible ver con luz visible, gracias a que dichos objetos irradian calor. Las víboras de la familia de los crótalos, tales como las serpientes de cascabel, tienen una hendidura sensorial entre los ojos y la nariz que utilizan para detectar luz infrarroja. Así, la cascabel puede detectar animales de sangre caliente por el calor infrarrojo que irradian, incluso en la oscuridad. Se cree que víboras que tienen dos hendiduras sensoriales perciben una visión en tres dimensiones en el infrarrojo. 

Sentimos los efectos de la radiación infrarroja cada día. El calor de la luz del sol, del fuego, de un radiador de calefacción o de una acera caliente proviene del infrarrojo. Aunque no podemos ver esta radiación, los nervios en nuestra piel pueden sentirla como calor. Las terminaciones nerviosas de la piel son sensibles a la temperatura y pueden detectar la diferencia entre la temperatura interior del cuerpo y la temperatura exterior de la piel. También utilizamos rayos infrarrojos cuando usamos una unidad de control remoto de un televisor.

Tomado de: http://legacy.spitzer.caltech.edu/espanol//edu/ir/infrared.html

martes, 5 de octubre de 2010

RADIACION INFRARROJA

La radiación infrarroja (IR) es una radiación electromagnética cuya longitud de onda comprende desde los 760-780 nm, limitando con el color rojo en la zona visible del espectro, hasta los 10.000 o 15.000 nm (según autores), limitando con las microondas.
Su descubrimiento se debe a W Herschel, quien en 1800 detectó en el espectro de la radiación solar un aumento importante de temperatura en la zona situada más allá del rojo, de la que no provenía ninguna luz visible. Posteriormente, Kírchhoff, Wien y Stephan estudiaron de forma experimental sus leyes y propiedades.
La Comisión Internacional de Iluminación o CIE (del francés: Commission International d'
Èclairage) ha establecido tres bandas en el IR:

IRA: 780-1,400nm
IRB: 1.400-3.000 nm
IRC: 3.000-10.000 nm

Sin embargo, a efectos prácticos, según los efectos biológicos, suelen dividirse en IR distales (entre los 15.000 y 1.500 nm) e IR proximales (entre los 1.500 y los 760 nm).
Desde el punto de vista terapéutico, es una forma de calor radiante, que puede transmitirse sin necesidad de contacto con la piel. Produce un calor seco y superficial, entre 2 y 10 mm de profundidad.

PRODUCCIÓN DE RADIACIÓN INFRARROJA

Los IR se producen por los cuerpos calientes ya que se deben a cambios en los estados de
energía de electrones orbitales en los átomos o en los estados vibracionales y rotacionales de los enlaces moleculares. Todos los objetos a temperatura superior al cero absoluto (-273 0C) emiten radiación IR. La cantidad y la longitud de onda de la radiación emitida dependen de la temperatura y la composición del objeto considerado.
El sol es la principal fuente natural de radiación IR; constituye el 59% del espectro de emisión solar. Las fuentes artificiales de producción de IR son los emisores no luminosos (que emiten infrarrojos distales) y las lámparas o emisores luminosos (infrarrojos proximales).

Los emisores no luminosos consisten en resistencias eléctricas dispuestas, generalmente, en
espiral, sobre una superficie refractaria cerámica o, menos frecuentemente, en forma de varillas o barras de resistencia rodeadas de una superficie reflectante. Estas fuentes emiten gran cantidad de IR de onda larga, entre los 1500 y los 12.500 nm, aunque también emiten cierta cantidad de IR proximal. Su radiación alcanza, como mucho, una profundidad de 2-3 cm bajo la piel. Estos reflectores de IR alcanzan su máxima potencia tras unos minutos de su conexión.
Los emisores luminosos son lámparas especiales, constituidas por filamentos de tungsteno (en ocasiones, de carbono) dispuestos en una ampolla de cristal, que contiene un gas inerte a baja presión, con su reflector correspondiente para mejorar la direccionalidad del haz. Este filamento se calienta hasta temperaturas de 1.900 0C y emite gran cantidad de IR proximal (entre 760 y 1500 nm), además de abundante luz visible. Su radiación alcanza unos niveles de profundidad entre 5 y 10 mm bajo la piel.

Las lámparas se adquieren de forma aislada para montarlas en soportes de diversa índole. En ocasiones, se combinan con lámparas de ultravioleta, para aplicarlas en forma de baño
de luz parcial o total. Son las denominadas lámparas solares. También suelen
emplearse grupos de lámparas de IR para aplicar baños de IR exclusivamente.

Tomado de: www.sld.cu/galerias/pdf/sitios/...fis/radiacion_infrarroja.pdf